"i post this for my cousin i think this may help full to people who does not want more info other than the syllabus. hope you enjoy with this post "
For Direct Recruitment of Junior Telecom Officers, an objective type Examination of 3 hours duration consisting of following sectional papers will be conducted:
* Scheme
A. Engineering Stream Paper - I
B. Engineering Stream Paper - II
C. General Ability Test Paper - III
1. The standard of paper in Engineering subjects will be that of Engineering Degree Examination of an Indian University.
2. In the general ability test, special attention will be paid to assess the candidate’s capacity for general awareness. The standard of paper in general ability test will be such as may be expected of an Engineering Graduate.
* 3. The syllabus for engineering stream papers will be as given below.
*
* SYLLABUS
1. Materials and components
Structure and properties of Electronic Engineering materials, Conductors, Semiconductors and Insulators, Magnetic, Ferroelectric, Piezoelectric, Ceramic, Optical and Superconducting materials. Passive components and characteristics, Resistors, Capacitors and Inductors; Ferrites, Quartz crystal, Ceramic resonators, Electromagnetic and Electromechanical components.
2. Physical Electronics, Electron Devices and ICs
Electrons and holes in semiconductors, Carrier Statistics, Mechanics of current flow in a semi-conductor, Hall effect; Junction theory; Different types of diodes and their characteristics; Bipolar Junction transistor; Field effect transistors; Power switching devices like SCRs, CTOs, power MOSFETs; Basics of ICs-bipolar, MOS and CMOS types; Basics of Opto Electronics.
3. Network theory
Network analysis techniques: Network theorem, transcient and steady state sinusoidal response, Transmission criteria: delay and rise time Elmore’s and other definition, effect of cascading. Elements of network synthesis.
4. Electromagnetic Theory
Transmission lines: basic theory, standing waves, matching applications, microstrip lines; Basics of waveguides and resonators; Elements of antenna theory.
5. Electronic Measurements and instrumentation
Basic concepts, standards and error analysis; Measurements of basic electrical quantities and parameters; Electronic measuring instruments and their principles of working: analog and digital, comparison, characteristics, applications. Transducers; Electronic measurements of non-electrical quantities like temperature, pressure, humidity etc. Basics of telemetry for industrial use.
6. Power Electronics
Power Semiconductor devices, Thyristor, Power transistor, MOSFETs, Characteristics and operation. AC to DC convertors; 1-Phase and 3-phase DC to DC Convertors.
AC regulators. Thyristor controlled reactors, switched capacitor networks.
Inverters: Single-phase and 3-phase. Pulse width modulation. Sinusoidal modulation with uniform sampling. Switched mode power supplies.
Transistor biasing and stabilization, Small Signal analysis. Power amplifiers. Frequency response, Wide band techniques, Feedback amplifiers. Tuned amplifiers. Oscillators. Rectifiers and power supplies. Operational Amplifier, other linear integrated circuits and applications. Pulse shaping circuits and waveform generators.
2. Digital Electronic Circuits
Transistor as a switching element; Boolean algebra, simplification of Boolean functions, Karnaugh Map and applications; IC Logic gates and their characteristics; IC logic families: DTL, TTL, ECL, NMOS, PMOS and CMOS gates and their comparison; Combinational logic circuits; Half adder, full adder; Digital Compartor; Multiplexer Demultiplexer; ROM and their applications. Flip-flops, R-S, J-K, D and T flip-flops; Different types of counters and registers; waveform generators. A/D and D/A convertors. Semiconductor memories.
3. Control Systems
Transient and steady state response of control systems; Effect of feedback on stability and sensitivity, Root locus techniques; Frequency response analysis. Concepts of gain and phase margins; Constant-M and Constant-N Nichol’s Chart; Approximation of transient response from Constant-N Nichol’s Chart; Approximation of transient response from closed loop frequency response; Design of Control Systems, Compensators; Industrial controllers.
4. Communication systems
Basic information theory: Modulation and detection in analogue and digital systems; Sampling and data reconstruction. Quantization & Coding; Time division and frequency division multiplexing; Equalisation; Optical Communication: in free space & fibre optic; Propagation of signals at HF, VHF, UHF and microwave frequency; Satellite communication.
5. Microwave Engineering
Microwave Tubes and solid state devices, Microwave generation and amplifiers, Waveguides and other Microwave Components and Circuits, Microstrip circuits, Microwave antennas, Microwave Measurements, MASERS LASERS; Microwave Propogation. Microwave Communication Systems-terrestrial and satellite based.
6. Computer Engineering
Number Systems; Data representation; Programming; Elements of a high level programming language PASCAL/C; use of basic data structures; Fundamentals of computer architecture processor design; Control unit design; Memory organization. I/O System Organization. Personal computers and their typical uses.
7. Microprocessors
Microprocessor architecture - Instruction set and simple assembly language programming. Interfacing for memory and I/O. Applications of Microprocessors in Telecommunications and power system.